Saturday 28 September 2013

Relativistic Chemistry- Why Mercury is Liquid

Mercury is a periodic anomaly. It's liquid at room temperature, but why? Traditionally, the answer has always been its low melting point, but how? The marriage of quantum chemistry and relativity allows us to demystify many deviations of the periodic table, let's begin by comparing some of its next-door neighbours. Au and Hg are similar and distinct in many ways: with melting points of 1,064 °C and -38.83 °C densities of 19.32 and 19.30 g·cm−3 respectively. Their entropies of fusion are quite similar as opposed to their enthalpies. And regarding their crystalline structures: Au, Ag and Cu are cubic while Zn and Cd are hexagonal; Hg is rhombohedrally distorted Finally, Hg is a poor conductor with weak metal-metal bonding as opposed to Au, despite their similar electron configurations. Looking beyond the rare earth elements, some surprising periodic deviations arise; Hf and Zr have an uncanny resemblance. To explain this phenomenon, the lanthanide contraction is invoked. This involves the filling of the 4f orbital (unlike s, p or d electrons, here the electrons poorly shield the nuclear charge). As we move along the rare earths, 14 protons are added and the lesser penetration of the 4f orbitals means they are partially shielded by the 14 4f electrons; causing the electron cloud to contract. But other questions remain unanswered by the lanthanide contraction: 1. why is Ag coloured gold? why not silver? 2.what is the reason for the high electron affinity of Au? One may be tempted to introduce the idea of an inert 6s pair, but this fails to address the liquid nature of mercury. Relativity dictates that the mass of an object increases with its velocity, hence we can derive 3 main relativistic effects relevant to Hg and Au.

Firstly, the p3/2 orbital contracts to a lesser degree as opposed to the s1/2 and p1/2 orbitals (which contract a lot). Secondly, such causes an outward augmenting of the d and f orbitals (in relation to the s and p orbitals). And thirdly, the relativistic splitting of the p, d and f orbital energies manifests itself as spin-orbit coupling. These 3 effects cause the energy gap (difference) between the 5d5/2 and 6s1/2 orbitals to shrink. More importantly, we may explain away the colours of Au and Ag; the colour of Au is caused by the absorption of blue light causing 5d electrons to be excited to the 6s level, however silver appears colourless when it absorbs UV. The relativistically contracted 6s orbital in Hg is filled and hence, unlike Au, the 2 6s electrons don't play that much a role in metal-metal bonding, which is why it is liquid at room temperature.

No comments:

Post a Comment